GRYPHON™ BT

Reference Manual

GRYPHON™ BT

REFERENCE MANUAL

DATALOGIC

DATALOGIC S.p.A. Via Candini 2 40012 - Lippo di Calderara di Reno Bologna - Italy

GRYPHON™ BT

Ed.: 12/2004

This manual refers to software version 3.10 and later.

ALL RIGHTS RESERVED

Datalogic reserves the right to make modifications and improvements without prior notification.

Datalogic shall not be liable for technical or editorial errors or omissions contained herein, nor for incidental or consequential damages resulting from the use of this material.

Product names mentioned herein are for identification purposes only and may be trademarks and or registered trademarks of their respective companies.

© Datalogic S.p.A. 2000-2004

CONTENTS

	GENERAL VIEW	vii
1	INTRODUCTION	1
2	GRYPHON™ BT POWER	
2.1	Powering the C-GRYPHON	
2.2	Battery Type	
2.3	Battery Charging	
2.4	Replacing Gryphon™ BT Batteries	5
3	GRYPHON™ BT OPERATION	
3.1	Bluetooth® Definitions	6
3.2	Bluetooth® Radio Connection	7
3.2.1	Gryphon™ BT as Slave	
3.2.2	Gryphon™ BT as Master	
3.2.3	Sleep State	9
3.2.4	Data Transmission	
3.2.5	Wedge Emulation Utility	10
4	CONFIGURATION	
4.1	Configuration Methods	11
4.1.1	Reading Configuration Barcodes	
4.1.2	Using DL Sm@rtSet	11
4.1.3	Sending Configuration Strings from Host	
4.2	Setup Procedures	
4.2.1	Setup for Gryphon™ BT Slave	
4.2.2	Setup for Gryphon™ BT Master	
4.3	Changing Default Settings	14
	DATA FORMAT	
	Code Identifier	
	Custom Code Identifier	19
	Header	
	Terminator	
	Field Adjustment	
	Field Adjustment Character	
	Code Length Tx	
	Character Replacement	
	Address Stamping	
	Address Delimiter	26

POWER SAVE	27
Scan Rate	28
READING PARAMETERS	
Operating Mode	
Hand-Held Operation	
Stand Operation	
Hardware Trigger Mode	
Trigger-Off Timeout	
Flash Mode	
Reads per Cycle	
Safety Time	
Beeper Intensity	
Beeper Tone	
Beeper Type	
Beeper Length	35
PDF Decoding Recognition Intensity	35
Good Read Spot Duration	36
·	
DECODING PARAMETERS	
Ink-Spread	38
Overflow Control	38
Interdigit Control	39
Decoding Safety	39
Puzzle Solver™	40
CODE SELECTION	
EAN/UPC Family	43
2/5 Family	47
Code 39 Family	48
Code 128 Family	50
Code 93	51
Codabar Family	52
Codablock-A	54
Codablock-F	
MSI	55
Plessey	
Telepen	
Delta IBM	
Code 11	
Code 16K	
Code 49	
RSS Family	
PDF417	

	ADVANCED FORMATTING	63
	Concatenation	
	Advanced Formatting	
	Zebra Printer Formatting	
	Zebra Printer Format File Selection	84
	RADIO PARAMETERS	86
	Radio Protocol Timeout	
	Transmission Retry	
	ACK/NACK Protocol and Frame Packing	
	Power-Off Timeout	
	User-Friendly Name	
	Beeper Control for Radio Response	80
	Auto-Connection (for Master only)	
	Auto Reconnection (for Master only)	
	Auto reconnection (for inaster only)	30
5	REFERENCES	91
5.1	Data Format	
5.1.1	Address Stamping	91
5.1.2	Address Delimiter	
5.2	Reading Parameters	
5.2.1	Operating Mode	92
5.2.2	Hardware Trigger Mode	92
5.2.3	Trigger-Off Timeout	
5.2.4	Reads per Cycle	
5.2.5	Safety Time	
5.3	Decoding Parameters	
5.3.1	Ink-Spread	
5.3.2	Overflow Control	
5.3.3	Interdigit Control	
5.4	Advanced Formatting	
5.4.1	Zebra Printer Formatting	
5.4.2	Zebra Printer Format File Selection	
5.5	Radio Parameters	95
5.5.1	Radio Protocol Timeout	
5.5.2	Transmission Retry	
5.5.3	ACK/NACK Protocol and Frame Packing	
5.5.4	Power-Off Timeout	97
5.5.5	User Friendly Name	
5.5.6	Beeper Control for Radio Response	98
5.5.7	Auto-Connection (Master only)	98
5.5.8	Auto-Reconnection (Master only)	
5.6	Configuration Editing Commands	99
5.7	Radio Control Commands	100
5.8	C-GRYPHON Configuration	
	-	
6	TROUBLESHOOTING	102

7	TECHNICAL FEATURES	103
7.1	Gryphon™ BT	103
7.2	C-GRYPHON	104
7.3	Status Indicators	105
7.4	Reading Diagrams	107
A	HOST CONFIGURATION STRINGS	109
В	CODE IDENTIFIER TABLE	118
С	HEX AND NUMERIC TABLE	121

GRYPHON™ BT READER

Figure A – Gryphon™ BT Series Reader

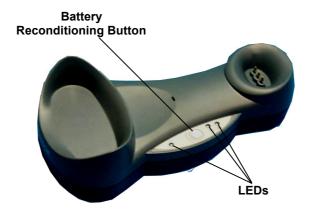


Figure B - C-GRYPHON

1 INTRODUCTION

Datalogic has moved a step ahead in the concept of "instinctive reading". The new **Gryphon™ BT** reader series has been developed to provide optimised reading performance through excellent ergonomic design, a natural instinctive reading approach and innovative good reading feedback.

The Gryphon™ BT (Gryphon™ Bluetooth®) reader is a CCD wireless barcode scanner communicating in the 2.4 GHz ISM band and using the Serial Port Profile (SPP). Thanks to a Bluetooth® device, such as a Bluetooth® dongle, the reader can send data to a remote Host such as a PC, PDA, printer, etc.

The "INSTINCTIVE READING DISTANCE," a concept introduced by Datalogic a few years ago based on in-depth ergonomic studies, represents the natural position of the user while reading a code. The Gryphon™ BT series takes this concept one step further. The series includes two cordless (BT100 and BT200) models, allowing wireless operations at the desk/POS within a 10 meter range. The new "blue spot," (Datalogic patent application) produced by the Gryphon™ BT provides "good reading" feedback directly on the code, where the user usually tends to be looking. Correct pointing becomes quick and easy thanks to the sharp and bright illumination line. All these characteristics are coupled with outstanding performance in terms of reading quickness and decoding capability thanks to state-of-the-art optics and a decode rate of 270 scans/sec, making the Gryphon™ BT very user friendly, intuitive and fast.

Specially optimised optics allow reading of the most popular standard codes with superior depths of field from near contact to over 30 cm. High resolution codes, which can reach 3 mils are also easily read. The Gryphon™ BT200 has been designed to provide decoding of the PDF417, as well as traditional barcodes. The Gryphon™ BT reader series is paving the road for innovative barcode reading.

The C-Gryphon battery charger is provided in the package to charge the Gryphon™ BT batteries and to provide a means for serial configuration of the Gryphon™ BT reader.

1

2 GRYPHON™ BT POWER

To begin using your Gryphon™ BT reader you must charge the Gryphon™ BT battery using C-Gryphon charger as described in par. 2.3 and in the Quick Reference manual. A full charge takes 4 hours with NiMh batteries.

2.1 POWERING THE C-GRYPHON

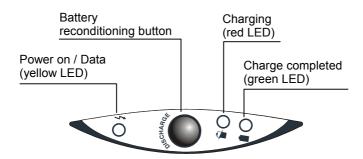
Connections should always be made with power off!

Apply power to C-GRYPHON by connecting a power supply unit to the connector on the base of the battery charger.

C-GRYPHON is ready to charge Gryphon™ BT Series readers with NiMh or NiCd batteries.

C-GRYPHON power supply connector

2.2 BATTERY TYPE


You can install NiMh, NiCd or Alkaline AA batteries in the GRYPHON™ BT.

2.3 BATTERY CHARGING

Once the system is connected and powered, you can place the GRYPHON $^{\text{TM}}$ BT onto the cradle to charge the battery.

Charging the batteries

When the reader is correctly placed onto the cradle, the red LED on the cradle goes on to indicate that the battery is charging. The green LED on the cradle goes on when the battery is completely charged.

When using NiCd or NiMh batteries, frequent recharging before fully discharging can cause a "memory effect" in which the batteries assume a reduced capacity.

Since it is not practical to wait for the reader to be fully discharged before recharging it, the C-GRYPHON BT are provided with a battery-reconditioning feature which overcomes the "memory effect" problem.

To perform battery reconditioning, simply press the battery-reconditioning key on the cradle control panel: the battery will be fully discharged in a short period of time (red LED flashing), then automatically recharged.

We recommend performing the battery reconditioning once every few months or whenever you feel the battery capacity has decreased.

The LEDs positioned on the cradle signal the charge status, as described in the following table:

	LED	STATUS
⊭	Power on / Data	Yellow On = C-GRYPHON is powered. Yellow Blinking = C-GRYPHON receives commands from the Host.
	Charging	Red On = the battery charge is in progress. Red Blinking = the battery reconditioning is in progress.
	Charging completed	Green On = the battery is completely charged.
	Charging + Charging completed	Red and Green Blinking together = The reader is not correctly placed onto the cradle

2.4 REPLACING GRYPHON™ BT BATTERIES

To change the batteries in your GRYPHON™ BT scanner, proceed as follows:

1. Unscrew the battery cover screw.

2. Open the battery cover.

3. Replace the old batteries with new ones, then screw the battery cover back into place.

NiMh, NiCd, or Alkaline AA Batteries

CALITION

Dispose of used batteries properly.

Do not disassemble, modify, heat or throw batteries into fire. This could cause leakage of liquid, generation of heat or, in extreme cases, explosion.

Replace only with the same type recommended.

3 GRYPHON™ BT OPERATION

3.1 BLUETOOTH® DEFINITIONS

Bluetooth® address: a unique 12-character hexadecimal, IEEE 48-bit

address (BT ADDR) that represents a Bluetooth®

device.

Bluetooth® controller: A sub-system containing Bluetooth® RF, baseband,

resource controller, link manager, device manager,

and Bluetooth® HCI.

Bluetooth® device: a device that is capable of short-range wireless

communication using the Bluetooth® system.

BT: abbreviation for Bluetooth® protocol is a

predefined rule that sets out a specific system for devices to communicate with each other and a protocol stack is the layering of the protocols that are used in a specific technology. The Bluetooth[®] Radio

protocol operates in the 2.4GHz ISM band.

Remote Bluetooth® device: any Bluetooth® device the reader can communicate

with.

SPP: Serial Port Profile. Bluetooth® profile creating an

RS232 cable replacement.

Master: the first Bluetooth® device initiating the radio

connection (Discovery procedure).

Slave: a Bluetooth® device which can only wait for a

Bluetooth® Master device to initiate a connection

with it.

User-Friendly name: a human-readable name to set for a Gryphon™ BT

to make it easily recognizable when operating

together with other Bluetooth® devices.

Piconet: Bluetooth® device network where a Master can

communicate with up to 7 Slaves.

For further information about Bluetooth technology see the website:

https://www.bluetooth.org/

3.2 BLUETOOTH® RADIO CONNECTION

During typical operation a physical radio channel is shared by a group of devices that are synchronized to a common clock and frequency hopping pattern. One device provides the synchronization reference and is known as the Master. All other devices are known as Slaves. A group of devices synchronized in this fashion form a piconet.

Most Bluetooth[®] devices can be both Master or Slave. The Master will be the first unit to initiate the connection (page procedure).

Some devices can only be Slaves (i.e. printers). They can only wait for a Bluetooth[®] Master device to initiate a connection with them.

Gryphon™ BT can be either Master or Slave. As Master it can initiate a connection with only one Slave device.

The blue LED and / or the beeper always indicate the reader radio connection status (see also the Reader Status table, at page 106):

- the radio connection is signaled by the blue LED through a single blink at regular intervals, while if the reader radio is disconnected the LED emits two short blinks at regular intervals;
- during the initialization procedure, if the radio connection attempt is successful, the reader emits four ascending tones;
- the radio disconnection is signaled by four descending tones.

3.2.1 Gryphon™ BT as Slave

Once set as Slave, a Gryphon $^{\text{TM}}$ BT reader requires no particular configuration for communication, however some radio parameters can be set to increase system performance and data transmission security. At startup the reader can only wait for the Master to initialize the radio communication.

The following is a general procedure recommended for Gryphon $^{\text{\tiny{TM}}}$ BT Slave applications:

- 1. Power up the remote Bluetooth® Master device (example Laptop or PC).
- 2. Power up the Gryphon™ BT reader within radio range (10 meters).

 Any modifications to the radio configuration should be made at this time before the radio connection takes place.

- 3. From the remote Bluetooth[®] Master device, execute the Discovery procedure, (according to the procedure given in the documentation of the Bluetooth[®] Master device), to recognize the Gryphon[™] BT reader(s) within radio range.
- 4. Check that **"Gryphon BTx00"** is shown among the discovered devices.
- 5. Request to open an SPP connection with Gryphon™ BT, making sure to disable any required PIN and/or pairing parameters. Gryphon™ BT is always discoverable and connectable without any required PIN.

If the PIN of the Bluetooth® Master device cannot be disabled, use the PIN "1234". The Gryphon™ BT Slave will emit four ascending tones indicating radio connection.

After the Gryphon™ BT reader(s) indicate radio connection (see also the Reader Status Table, at page 106), you can start sending barcodes.

The following figure shows an example Gryphon™ BT Slave application.

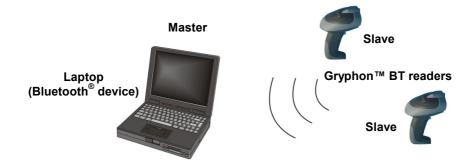


Figure 1 - Gryphon™ BT Slave Application

If the Master Bluetooth[®] device can support a **piconet**, the communication can be established with up to **7 seven Slave** readers at the same time.

3.2.2 Gryphon™ BT as Master

Once set as Master, a Gryphon™ BT reader must be configured with the address of the Slave device to which it wants to communicate.

By default, at startup the reader initializes the communication with the Slave. If the connection is successful, the reader can send barcodes to the Slave device. Radio connections can also be managed manually as described in pars. 5.5.7, 5.5.8 and 5.7.

During the request of radio connection or disconnection with a remote Bluetooth[®] Slave device, the reader emits a series of ticks and short blinks of the blue LED.

The following figure shows an example Gryphon™ BT Master application.

Figure 2 - Gryphon™ BT Master Application

3.2.3 Sleep State

The μP in the reader enters a "Sleep" state after 5 minutes of no reading for minimum power consumption.

3.2.4 Data Transmission

The transmission of data can be transparent (no ACK/NACK protocol), when each character is read and immediately sent to the Host (default value). Otherwise, data transmission can be with flow control (with ACK/NACK protocol), when, after each reading, Gryphon™ BT waits for an acknowledge that the remote Host received the data before reading and sending the following code.

RTS/CTS handshaking should be set by the Bluetooth[®] COM driver for correct serial communication. If not used, the RTS line must be forced to the level that doesn't block such communication, otherwise, after 1 minute GryphonTM BT interrupts the radio link (disconnects).

3.2.5 Wedge Emulation Utility

This utility is provided on the CD-ROM. When using the Wedge Emulation Utility, it is advised to correctly set the terminators depending on the expected format for the program in which the data will be collected.

4 CONFIGURATION

4.1 CONFIGURATION METHODS

4.1.1 Reading Configuration Barcodes

This manual can be used for complete setup and configuration of your reader by following the setup procedures in this chapter (see par. 4.2 for an overview).

If you wish to change the default settings, this manual provides complete configuration of your reader in an easy way.

To configure your reader:

- 1) Open the folded page in <u>Appendix C</u> with the hex-numeric table and keep it open during the device configuration.
- Read the Enter Configuration code ONCE, available at the top of each page of configuration.
- 3) Modify the desired parameters in one or more sections following the procedures given for each group.
- Read the Exit and Save Configuration code ONCE, available at the top of each page of configuration.

Reference notes describing the operation of the more complex parameters are given in chapter 5.

4.1.2 Using DL Sm@rtSet

DL Sm@rtSet is a Windows-based utility program providing a quick and user-friendly configuration method via the RS232 interface. You can also print configuration barcodes to a local printer for barcode reading configuration.

It also allows upgrading the software of the connected device (see the DL Sm@rtSet User's Manual for more details).

4.1.3 Sending Configuration Strings from Host

An alternative configuration method is provided in Appendix A using the C-Gryphon connected to the Host via the RS232 interface. Batch files containing the desired parameter settings can be prepared to configure devices quickly and easily. This method is particularly useful when many devices need to be configured with the same settings.

4.2 SETUP PROCEDURES

Follow one of the following two procedures to set up Gryphon™ BT as Slave or as Master

4.2.1 Setup for Gryphon™ BT Slave

1. Restore GRYPHON™ BT Default

2. Set Gryphon™ BT as Slave

YOUR READER IS NOW READY TO BE DISCOVERED (CONNECTED VIA RADIO) BY A BLUETOOTH® MASTER DEVICE AND READ BARCODES.

To change the defaults see par. 4.3.

Setup for Gryphon™ BT Master 4.2.2

Restore Gryphon™ BT default 1.

Set Gryphon™ BT as Master 2.

Enter configuration 3.

Set Remote Bluetooth® Device Address (slave) 4.

12 characters for the remote Bluetooth® device address specified in each Bluetooth® device.

Exit and Save configuration 5.

Request Radio Connection with Slave 6.

If the connection is not successful, you can attempt a connection manually by double-clicking the reader trigger.

YOUR READER IS NOW READY TO READ BARCODES.

To change the defaults see par. 4.3.

4.3 CHANGING DEFAULT SETTINGS

Once your reader is setup, you can change the default parameters to meet your application needs. Refer to the preceding paragraphs for initial configuration in order to set the default values and select the interface for your application.

In this manual, the configuration parameters are divided into logical groups making it easy to find the desired function based on its reference group.

DATA FORMAT parameters regard the messages sent to the Host system.

POWER SAVE manages overall current consumption in the reading device.

READING PARAMETERS control various operating modes and indicator status functioning.

DECODING PARAMETERS maintain correct barcode decoding in certain special reading conditions.

CODE SELECTION parameters allow configuration of a personalized mix of codes, code families and their options.

ADVANCED FORMATTING PARAMETERS allow code concatenation and advanced formatting of messages towards the Host.

RADIO PARAMETERS allow configuration of radio control parameters.

•	CODE IDENTIFIER	•
•	CUSTOM CODE IDENTIFIER	•
•	HEADER	•
•	TERMINATOR	•
•	FIELD ADJUSTMENT	•
•	FIELD ADJ. CHARACTER	•
•	CODE LENGTH TX	•
•	CHARACTER REPLACEMENT	•
•	ADDRESS STAMPING	•
•	ADDRESS DELIMITER	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

Read the code and follow the procedure given

- = Default value
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

CODE IDENTIFIER TABLE				
CODE	AIM STANDARD	DATALOGIC STANDARD	Custom	
2/5 interleaved] l <i>y</i>	N		
2/5 industrial] X y	Р		
2/5 normal 5 bars] S y	0		
2/5 matrix 3 bars] X y	Q		
EAN 8] E 4	A		
EAN 13] E 0	В		
UPC A] X y	С		
UPC E] X y	D		
EAN 8 with 2 ADD ON] E 5	J		
EAN 8 with 5 ADD ON] E 6	K		
EAN 13 with 2 ADD ON] E 1	L		
EAN 13 with 5 ADD ON] E 2	M		
UPC A with 2 ADD ON] X y	F		
UPC A with 5 ADD ON] X y	G		
UPC E with 2 ADD ON] X y	Н		
UPC E with 5 ADD ON] X y	I		
Code 39] A y	V		
Code 39 Full ASCII] A y	W		
CODABAR] F y	R		
ABC CODABAR] X y	S		
Code 128] C y	Т		
EAN 128] C y	k		
ISBT 128] C4	f		
Code 93] G y	U		
CIP/39] X y	Y		
CIP/HR] X y	е		
Code 32] X y	X		
Codablock-A]06	n		
Codablock-F Std] 0 4	I		
Codablock-F EAN]05	m		
MSI] M y	Z		
Plessey Standard]P0	а		
Plessey Anker]P1	0		
Telepen] X 0	d		
Delta IBM	1×0	С		
Code 11] H y	b		
Code 16K] K 0	р		
Code 49] T y	q		
RSS 14 Linear and Stacked] e 0	u		
RSS Limited	je0	V		
RSS Expanded Linear and Stacked] e 0	t		
PDF417	jL0	r		

- AIM standard identifiers are not defined for all codes: the X identifier is assigned to the
 code for which the standard is not defined. The y value depends on the selected options
 (check digit tested or not, check digit tx or not, etc.).
- When customizing the Datalogic Standard code identifiers, 1 or 2 identifier characters can
 be defined for each code type. If only 1 identifier character is required, the second
 character must be selected as FF (disabled).
- The code identifier can be singly disabled for any code by simply selecting FF as the first identifier character.
- Write in the Custom character identifiers in the table above for your records.

CODE IDENTIFIER

Datalogic standard

custom

CUSTOM CODE IDENTIFIER

define custom code identifier(s)

- Read the above code.
 (Code Identifiers default to Datalogic standard, see table on previous page).
- Select the code type from the code table in Appendix B for the identifier you want to change.
- ③ You can define 1 or 2 identifier characters for each code type. If only 1 identifier character is required, the second character must be selected as FF (disabled). Read the hexadecimal value corresponding to the character(s) you want to define as identifiers for the code selected in step ②: valid characters are in the range 00-FD.

Example: To define Code 39 Code Identifier = @

Read

one character header

three character header

five character header

seven character header

B

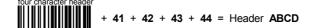
HEADER

no header

two character header

four character header

six character header


eight character header

After selecting one of the desired Header codes, read the character(s) from the HEX table.

Valid characters for all readers are in the range: **00-FE**

Example:

TERMINATOR

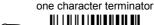
no terminator

two character terminator

four character terminator

six character terminator

eight character terminator


After selecting one of the desired Terminator codes, read the character(s) from the HEX table.

Valid characters for all readers are in the range: 00-FE

Example:

Default terminators = CR LF.

three character terminator

five character terminator

seven character terminator

FIELD ADJUSTMENT

disable field adjustment

Field adjustment allows a number of characters n, to be added to or subtracted from the barcode read. The adjustment can be different for each enabled code type. To <u>define</u> the field adjustment:

① Read the enable field adjustment code:

enable field adjustment

- ② Select the code type from the Code Identifier Table in Appendix B.
- 3 Select the type of adjustment to perform:

right addition

right deletion

left addition

left deletion

4 Read a number in the range 01 - 32 from the Hex/Numeric Table to define how many characters to add or delete:

Conditions:

- Adjustment is only performed on the barcode data, the Code Identifier and Code Length Transmission fields are not modified by the field adjustment parameter.
- If the field setting would subtract more characters than exist in the barcode, the subtraction will take place only to code length 0.
- You can set up to a maximum of 10 different field adjustments on the same barcode family or on different barcode families.

Example: To add 4 characters to the right of Standard Code 39 Codes:

enable field adjustment Code 39 right addition

Read + + + + + 04

FIELD ADJUSTMENT CHARACTER

① Read the field adjustment character code:

field adjustment character

② Read the hexadecimal value corresponding to the character you want to use for field adjustment.

Valid characters for all readers are in the range:

00-FE

Example:

To define the field adjustment character = A:

CODE LENGTH TX

◆ code length not transmitted

code length transmitted in variable-digit format

code length transmitted in fixed 4-digit format

The code length is transmitted in the message after the Headers and Code Identifier characters. The code length is *calculated* after performing any field adjustment operations.

CHARACTER REPLACEMENT

disable character replacement

This parameter allows up to three characters to be replaced from the barcode read. These substitutions are stored in memory. To <u>define each</u> character replacement:

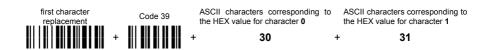
① Read one of the following character replacement codes:

first character replacement

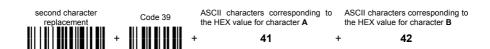
18

second character replacement

third character replacement



- ② From the Code Identifier Table in Appendix B, read the Code Identifier for the desired code family
 - **0** = character replacement will be effective for all code families.
- From the Hex/Numeric Table read two characters corresponding to the Hex value which identifies the character to be replaced. Valid values for all readers are in the range 00-FE.
- From the Hex/Numeric Table read two characters corresponding to the Hex value which identifies the new character to replace. Valid values for all readers are in the range 00-FE.
 - **FF** = the character to be replaced will be substituted with no character, that is, it will be removed from the code.


Example:

The following strings define:

- First Character Replacement: substitution in Code 39 barcodes of all occurrences of the 0 character with the 1 character.
- Second Character Replacement: substitution in Code 39 barcodes of all occurrences of the A character with the B character.

For Code 39 codes containing the string "0123", the contents transmitted will be "1123".

For Code 39 codes containing the string "ABCD", the contents transmitted will be "BBCD".

ADDRESS STAMPING

disable reader address stamping

enable reader address stamping

See par. 5.1.1 for details.

ADDRESS DELIMITER

◆ disable reader address delimiter

enable reader address delimiter and select characters

Read 2 HEX characters in the range 00-FE.

See par. 5.1.2 for details.

POWER SAVE

⊙ SCAN RATE ⊙

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.
 - = Read the code and follow the procedure given
 - ◆ = Default value
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

POWER SAVE

SCAN RATE

67 scans per sec.

135 scans per sec.

♦ 270 scans per sec.

A lower scan rate reduces power consumption but can lengthen reading response time.

\odot	OPERATING MODE	•
•	HAND-HELD OPERATION	•
•	STAND OPERATION	•
•	HARDWARE TRIGGER MODE	•
•	TRIGGER-OFF TIMEOUT	•
•	FLASH MODE	•
•	READS PER CYCLE	•
•	SAFETY TIME	•
•	BEEPER INTENSITY	•
•	BEEPER TONE	•
•	BEEPER TYPE	•
•	BEEPER LENGTH	•
•	PDF DECODING RECOGNITION INTENSITY	•
\odot	GOOD READ SPOT DURATION	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

- = Default value
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

OPERATING MODE

You can pre-configure both Hand-Held and Stand operating modes, and with the codes below, you can switch between them. See par. 5.2.1 for details. Stand operation is not advised since it constantly consumes battery power.

◆ hand-held operation

automatic

stand operation

HAND-HELD OPERATION

♦ hardware trigger

hardware trigger ready

software trigger

automatic

STAND OPERATION

hardware trigger

software trigger

automatic

HARDWARE TRIGGER MODE

◆ trigger active level

trigger active pulse

See par. 5.2.2 for details.

TRIGGER-OFF TIMEOUT

Read 2 numbers in the range 00-99:

00 = disables the trigger-off timeout

01-99 = corresponds to a max. 99 sec. delay after the trigger press to allow the reader to turn off automatically.

◆ trigger-off timeout disabled

See par. 5.2.3 for details.

FLASH MODE

Read 2 numbers in the range 01-99: 01 to 99 = from 1 to 9 9 seconds

◆ Flash-ON = 1 sec. Flash-OFF = 0.6 sec

READS PER CYCLE

♦ one read per cycle

multiple reads per cycle

See par. 5.2.4 for details.

SAFETY TIME

safety time

Limits same code consecutive reading.

Read 2 numbers in the range 00-99:

00 = no same code consecutive reading until reader is removed (no decoding) for at least 400 ms.

01 to 99 = timeout from .1 to 9.9 seconds before a consecutive read on same code.

◆ safety time = 0.5 sec

See par. 5.2.5 for details.

BEEPER INTENSITY

* very low intensity

medium intensity

low intensity

♦ high intensity

This sets the beeper OFF for data entry, while for all other beeper signals it has the meaning very low intensity.

The Intensity parameter is effective for all operating conditions described in par. 7.3.

BEEPER TONE

tone 1

tone 3

♦ tone 2

tone 4

BEEPER TYPE

BEEPER LENGTH

PDF DECODING RECOGNITION INTENSITY

GOOD READ SPOT DURATION

◆ medium

short

•	INK-SPREAD	•
•	OVERFLOW CONTROL	•
•	INTERDIGIT CONTROL	•
•	DECODING SAFETY	•
•	PUZZLE SOLVER™	•

CAUTION

Before changing these parameter values read the descriptions in par. 5.3.

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.
 - ◆ = Default value
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

INK-SPREAD

See par. 5.3.1 for details.

OVERFLOW CONTROL

See par. 5.3.2 for details.

INTERDIGIT CONTROL

See par. 5.3.3 for details.

DECODING SAFETY

three reads

Required number of good reads before accepting code.

PUZZLE SOLVER™

In the case of damaged or poorly printed codes, this parameter allows reading multiple parts of the single code to reconstruct it.

To read codes using this technology, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

Conditions:

This parameter is only valid for the following codes:

EAN 8 without Add-on	EAN 13 without Add-on	UPC A without Add-on
Code 128	Code 39	

- Codablock-A and Codablock-F codes are automatically disabled.
- For Code 39, Check digit control without transmission is forced.
- PuzzleSolver™ is disabled when code ISBT 128 is enabled.

\odot	EAN/UPC FAMILY	•
•	2/5 FAMILY	•
•	CODE 39 FAMILY	•
•	CODE 128 FAMILY	•
•	CODABAR FAMILY	•
•	CODE 93	•
•	CODABLOCK-A	•
•	CODABLOCK-F	•
•	MSI	•
•	PLESSEY	•
•	TELEPEN	•
•	DELTA IBM	•
•	CODE 11	•
•	CODE 16K	•
•	CODE 49	•
•	RSS FAMILY	•
•	PDF417 PDF READERS ONLY	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

- = Default value
- **3.** Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

DISABLE ALL CODE FAMILIES

The reader allows up to 5 code selections. This does not limit the number of CODES enabled to 5, as it depends on the code family.

SINGLE SELECTIONS =

- **ONE** combination code from the EAN family
- **ONE** code from the 2/5 family

Example

5 code selections:

- 1. 2/5 Interleaved
- 2. 2/5 Industrial
- 3. Code 128 + EAN 128
- 4. Code 39 Full ASCII + Code 32
- 5. UPC A/UPC E

In this section all **SINGLE** code selections are <u>underlined and in bold</u>.

EAN/UPC FAMILY

disable the family

① Read the desired family code

Note:

Since the EAN/UPC without ADD ON code selection is enabled by default, to correctly enable another selection, first disable the family.

EAN 8/EAN 13/UPC A/UPC E with and without ADD ON

WITHOUT ADD ON

♦ EAN 8/EAN 13/UPC A/UPC E

EAN 8/EAN 13

<u>UPC A/UPC E</u>

WITH ADD ON 2 AND 5

EAN 8/EAN 13/UPC A/UPC E

EAN 8/EAN 13

UPC A/UPC E

WITH ADD ON 2 ONLY

EAN 8/EAN 13

UPC A/UPC E

WITH ADD ON 5 ONLY

EAN 8/EAN 13

UPC A/UPC E

EAN/UPC CHECK DIGIT TX SELECTIONS

For each code type in this family you can choose to transmit the check digit or not

CHECK DIGIT
TRANSMISSION

EAN 8

EAN 13

UPC A

UPC E

NO CHECK DIGIT TRANSMISSION

FAN 8

EAN 13

UPC A

UPC E

CONVERSION OPTIONS

UPC E to UPC A conversion

UPC E to EAN 13 conversion

UPC A to EAN 13 conversion

EAN 8 to EAN 13 conversion

enable only ISBN conversion

enable only ISSN conversion

enable both ISBN and ISSN conversion

disable both ISBN and ISSN conversion

2/5 FAMILY

disable the family

① Read the desired family code

13

Read a check digit selection

CHECK DIGIT TABLE

no check digit control

Normal 2/5 (5 Bars)

check digit control and transmission

Check digit control without transmission

- 3 Read 4 numbers for the code length where:
- First 2 digits = minimum code length.
- Second 2 digits = maximum code length.

The maximum code length is 99 characters.

The minimum code length must always be less than or equal to the maximum. Examples:

0199 = variable from 1 to 99 digits in the code.

1010 = 10 digit code length only.

The pharmaceutical code below is part of the 2/5 family but has no check digit nor code length selections.

French pharmaceutical code

CODE 39 FAMILY

disable the family

① Read the desired family code

② Read a check digit selection

◆ Standard Code 39

CHECK DIGIT TABLE

no check digit control

check digit control and transmission

check digit control without transmission

The pharmaceutical codes below are part of the Code 39 family but have no check digit selections.

Code CIP39

CODE LENGTH (optional)

The code length selection is valid for the entire Code 39 family

Read the code + 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

set code length

The maximum code length is 99 characters. The minimum code length must always be less than or equal to the maximum.

Examples: **0199** = variable from 1 to 99 digits in the code. **1010** = 10 digit code length only.

CODE 128 FAMILY

disable the family

① Read the desired family code

EAN 128

control without transmission of check digit

Add GS Before Code

Code EAN 128 uses the ASCII <GS> character to separate a variable length code field from the next code field. This character can also be added before the code.

If the <GS> character has been modified in the Character Replacement parameter, the new character is affected by this command.

Enabling ISBT 128 automatically disables Puzzle Solver™.

CODE LENGTH (optional)

The code length selection is valid for the entire Code 128 family

Read the code + 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

The maximum code length is 99 characters. The minimum code length must always be less than or equal to the maximum.

Examples: 0199 = variable from 1 to 99 digits in the code. 1010 = 10 digit code length only.

The length is calculated on the output string.

CODE 93

♦ disable the code

control without transmission of check digit

Code 93

CODABAR FAMILY

♦ disable the family

① Read the desired equality control code

② Read a start/stop transmission selection

START/STOP CHARACTER TRANSMISSION

no start/stop character equality control

no transmission

start/stop character equality control

transmission

The Codabar ABC code below uses a fixed start/stop character transmission selection.

Codabar ABC

no start/stop character equality control but transmission.

Codabar ABC Forced Concatenation

enable Codabar ABC with forced concatenation

non start/stop character equality control but transmission

CODE LENGTH (optional)

The code length selection is valid for the entire Codabar family

Read the code + 4 numbers for the code length where:

First 2 digits = minimum code length.

Second 2 digits = maximum code length.

The maximum code length is 99 characters. The minimum code length must always be less than or equal to the maximum.

Examples: 0199 = variable from 1 to 99 digits in the code. 1010 = 10 digit code length only.

START/STOP CHARACTER CASE IN TRANSMISSION

The start/stop character case selections below are valid for the entire Codabar family:

transmit start/stop characters in lower case

transmit start/stop characters in upper case

CODABLOCK-A

◆ disable the code

Notes:

- Enabling Codablock-A automatically disables the entire Code 39 family and vice-versa.
- Enabling Codablock-A automatically disables Puzzle Solver™.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

CODABLOCK-F

disable the family

Codablock-F Standard

Codablock-F EAN

Notes:

Enabling Codablock-F automatically disables Puzzle Solver™.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

MSI

◆ disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

MOD10 check digit control no check digit transmission

MOD10 check digit control check digit transmission

MOD11 - MOD10 check digit control no check digit transmission

MOD11 - MOD10 check digit control check digit transmission

MOD10 - MOD10 check digit control no check digit transmission

MOD10 - MOD10 check digit control check digit transmission

PLESSEY

♦ disable the family

Enable the code by selecting one of the check digit selections.

Standard Plessey

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

Anker Plessey

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

TELEPEN

Enable the code by selecting one of the check digit selections.

Numeric Telepen

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

Alphanumeric Telepen

no check digit control

check digit control check digit transmitted

check digit control check digit not transmitted

DELTA IBM

♦ disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

Type 1 check digit control

Type 2 check digit control

CODE 11

♦ disable the family

Enable the code by selecting one of the check digit selections.

no check digit control

Type C check digit control check digit transmitted

Type C check digit control check digit not transmitted

Type K check digit control check digit transmitted

Type K check digit control check digit not transmitted

Type C and Type K check digit control check digits transmitted

Type C and Type K check digit control check digits not transmitted

CODE 16K

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

CODE 49

♦ disable the code

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

RSS FAMILY

disables the family

DISABLE CODE

disable RSS Expanded Linear and Stacked

disable RSS Limited

disable RSS 14 Linear and Stacked

ENABLE CODE

enable RSS Expanded Linear and Stacked

enable RSS Limited

enable RSS 14 Linear and Stacked

To read the stacked version of these codes, simply move the reader over the code so that each line of the code is scanned.

PDF417

disable the code

Only for GRYPHON™ BT200 readers.

To read stacked codes, simply move the illuminated bar over the code so that each line of the code is scanned. During this process a series of brief "ticks" indicates that reading is proceeding correctly.

•	CONCATENATION	•
•	ADVANCED FORMATTING	•
•	ZEBRA PRINTER FORMATTING	•
•	ZEBRA PRINTER FORMAT	•

Please follow the setup procedures carefully for these parameters.

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of page .
- 2. Read configuration codes precisely following the numbered procedure given.

= Read the code and follow the procedure given

- = Default value
- **3.** Read the **Exit and Save Configuration** code ONCE, available at the top of page.

CONCATENATION

Permits the concatenation of two codes defined by code type and length. It is possible to set a timeout for the second code reading and to define code transmission if the timeout expires.

The order of transmission is CODE 1-CODE 2.

Define Concatenation

Code 1

rg

1

Read the code type from the Code Identifier Table beginning in Appendix B.

code length

Read a number in the range 01-99 from the Hex/Numeric Table.

2

Code 2

Read the code type from the Code Identifier Table beginning in Appendix B.

Read a number in the range **01-99** from the Hex/Numeric Table.

3

Concatenation Result Code ID

use code 1 ID

use code 2 ID

Since you can concatenate codes from different families, you must select the Code ID character of the resulting code. The Code ID character will be sent in the output message only if it is enabled according to the Code Identifier selection (Datalogic, AIM, or Custom).

4

Concatenation Timeout

Read two numbers in the range **00** to **99** 00= no timeout 01-99 = timeout from 1 to 99 seconds

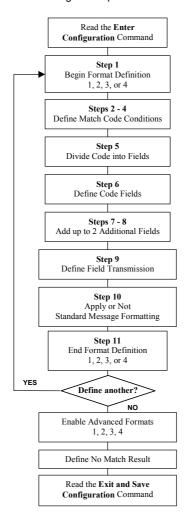
Transmission after Timeout

no code transmitted after timeout

only code 1 transmitted (if read) after timeout

only code 2 transmitted (if read) after timeout

either code 1 or code 2 transmitted after timeout


Define the timeout, which determines the valid waiting period between the two codes, in order to accept concatenation. If the timeout expires, the resulting action will be based on the following selection.

5

ADVANCED FORMATTING

Advanced formatting has been designed to offer you complete flexibility in changing the format of barcode data <u>before</u> transmitting it to the host system. This formatting will be performed when the barcode data meets certain criteria which you will define in the following procedure.

Up to 4 advanced code management formats can be defined and saved in memory. For each format you must complete the entire configuration procedure:

1

B

begin Format 1 definition

begin Format 2 definition

begin Format 3 definition

begin Format 4 definition

2

Match Code Type

match code type

Read the above code + the code type to match from the Code Identifier Table in Appendix B.

OR

E

3

Match Code Length

match code length

Read the above code + two numbers in the range 01 to 99 for the exact code length.

OR

4

Match with Predefined Characters

no match

JK

B

match with 1 character

match with a 2-character string

match with a 3-character string

match with a 4-character string

After selecting the predefined match code, read the character(s) from the HEX table. Range of characters = **00-FE**.

Example:

Match code with the 2-character predefined string = "@@".

Match with a 2-character string

Read

+40 + 40

AND

position of first character in predefined string

Read the above code + two numbers in the range **01** to **99** representing the character position in the code where the first character of the predefined string must be found.

Read 00 if the match string can be found in any character position.

5

Divide Code into Fields

divide code into fields

Read one number in the range 1 to 5 to divide the code into fields.

6

Define Code Fields

define code fields

Each code field length can be set by either:

a) defining a field separator character to be found in the code itself. In this case you can choose to discard the code separator character or include it as the last character of the field.

OR BY

b) specifying a specific character length up to the maximum of 99 characters.

OR BY

c) selecting the last field as variable length (if any).

You must define the same number of fields as selected in step 5, including fields that will not be transmitted.

DEFINE FIELD 1 BY:

EITHER

a) [[3]

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

AND

Field 1 Terminators

no field terminators

B

1 field terminator

B

DEFINE FIELD 2 BY:

EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

AND

Field 2 Terminators

no field terminators

B

1 field terminator

B

DEFINE FIELD 3 BY:

EITHER

a) [[3]

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

c)

this is the last field (variable length)

AND

Field 3 Terminators

no field terminators

(A)

1 field terminator

DEFINE FIELD 4 BY:

EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) [[3]

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

this is the last field (variable length)

c)

AND

Field 4 Terminators

no field terminators

B

1 field terminator

B

DEFINE FIELD 5 BY:

EITHER

a) 🔯

field separator

Read the field separator character from the HEX table. Range of characters = **00-FE**. discard separator

include separator

OR

b) 🔯

field length

Read two numbers in the range 01 to 99 to define the field length.

OR

this is the last field (variable length)

c)

AND

Field 5 Terminators

no field terminators

B.

7 First Additional Fixed Field

no fixed field

1 character fixed field

2 character fixed field

3 character fixed field

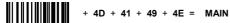
4 character fixed field

5 character fixed field

6 character fixed field

After selecting one of the Additional Fixed Field codes, read the corresponding character(s) from the HEX table. Range of characters = 00-FE.

Example:


E

3

13

13

4 Character Fixed Field

Second Additional Fixed Field

no fixed field

1 character fixed field

2 character fixed field

3 character fixed field

4 character fixed field

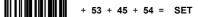
5 character fixed field

6 character fixed field

After selecting **one** of the Additional Fixed Field codes, read the corresponding character(s) from the HEX table. Range of characters = **00-FE**.

Example:

8


E

3

3

13

3 Character Fixed Field

9

Field Transmission

number of fields to transmit

Read one number in the range 1 to 7 for the number of fields to transmit. Include only fields to be transmitted.

Field Order Transmission

Read the codes corresponding to the fields to transmit in the order in which they are to be transmitted, see example.

field 1

field 3

field 5

additional field 2

field 2

field 4

additional field 1

Example:

The barcode is divided into 2 defined fields plus 1 additional fixed field.

Transmit in the order: Field 2, Additional Field 1, Field 1.

Number of Fields

10

Standard Formatting

do not apply standard formatting

apply standard formatting

After performing Advanced Formatting on the barcode read, Standard Formatting (Headers, Code Length, Code ID, Terminators) can be applied to the message to be transmitted.

11

End Format Definition

end Format 1 definition

end Format 2 definition

end Format 3 definition

end Format 4 definition

Enable Advanced Format

no Advanced Formats enabled

Advanced Format 1

disable

Advanced Format 2

disable

Advanced Format 3

disable

Advanced Format 4

disable

No Match Result

clear data - no transmission

transmit data using standard format

This selection determines the action to be taken when codes read do not conform to the advanced format requisites (no match).

- Codes not matching can be ignored, cleared from memory and not transmitted.
- Codes not matching can be transmitted using the Standard formatting (Headers, Code Length, Code ID, Terminators).

ZEBRA PRINTER FORMATTING

1

Disable Headers and Terminators

This step is necessary if **CR** and / or **LF** characters are used in either the Header or Terminator since the Zebra printer interprets these characters as field separators. **CR** and **LF** are the default Terminators.

2 Define the Number of Zebra Printer Parameters and Relative Values

Number of Parameters

define 1 parameter

Parameter Values

B

define 2 parameters

See par. 5.4.1 for details.

ZEBRA PRINTER FORMAT FILE SELECTION

File 01

File 02

File 04

File 06

File 08

File 09

File 10

File 11

File 12

File 13

File 14

File 15

See par. 5.4.2 for details.

⊙	RADIO PROTOCOL TIMEOUT	\odot
•	TRANSMISSION RETRY	•
•	ACK/NACK PROTOCOL AND FRAME PACKING	•
•	POWER-OFF TIMEOUT	•
•	USER-FRIENDLY NAME	•
•	BEEPER CONTROL FOR RADIO RESPONSE	•
•	AUTO-CONNECTION (FOR MASTER ONLY)	•
•	AUTO-RECONNECTION (FOR MASTER ONLY)	•

- **1.** Read the **Enter Configuration** code <u>ONCE</u>, available at the top of each page.
- **2.** Read configuration codes from the desired groups.

= Read the code and follow the procedure given

3. Read the **Exit and Save Configuration** code <u>ONCE</u>, available at the top of each page.

RADIO PROTOCOL TIMEOUT

Read a number from the table where:

03-19 = timeout from **3** to **19** seconds

♦ 3 seconds

See par. 5.5.1 for details.

TRANSMISSION RETRY

set transmission retry period

Read 2 numbers in the range 00-60:

00 = No Transmission Retry;

01-60 = corresponds to a max. 60 sec. period for automatic retry transmission.

◆ 00 (No Retry)

See par. 5.5.2 for details.

ACK/NACK PROTOCOL AND FRAME PACKING

 no ACK/NACK protocol nor frame packing

frame packing only

ACK/NACK protocol only

ACK/NACK protocol and frame packing

See par. 5.5.3 for details.

POWER-OFF TIMEOUT

B

power-off timeout

Read 2 numbers in the range 00-99:

00 = Power-off disabled; reader always ready

01-99 = corresponds to a max. 99 hour delay before power-off.

power-off after 4 hours.

See par. 5.5.4 for details.

USER-FRIENDLY NAME

B

change user-friendly name

Read 20 hexadecimal characters (in the range 00-7E) to define the user-friendly name:

restore factory user-friendly name

◆ "Gryphon BTx00

See par. 5.5.5 for details.

BEEPER CONTROL FOR RADIO RESPONSE

good decode and good reception

only good reception

only good decode

See par. 5.5.6 for details.

AUTO-CONNECTION (FOR MASTER ONLY)

See par. 5.5.7 for details.

AUTO RECONNECTION (FOR MASTER ONLY)

See par. 5.5.8 for details.

5 REFERENCES

5.1 DATA FORMAT

The output message from Gryphon™ BT towards the Host uses the following format:

[Bluetooth® Reader Addr] [Reader Addr Delimiter] [Header] [Code ID] [Code Length] CODE [Terminator]

[Items in square brackets are optional.]

5.1.1 Address Stamping

It is possible to include the reader's Bluetooth® address in the message sent to the host. This address is a 12-character hexadecimal string that is unique to every Bluetooth® device. For message output format, refer to par. 5.1.

5.1.2 Address Delimiter

The Address Delimiter allows a character to be included to separate the reader's Bluetooth® address stamping field from the next field in the message. Any character can be included in the hexadecimal range from 00 to FE. For message output format, refer to par. 5.1.

5.2 READING PARAMETERS

5.2.1 Operating Mode

This group of parameters allows setting different reading modes for <u>either</u> Hand-Held operation or Stand operation:

- SoftwareTrigger: the reader is set in FLASH MODE. Code reading takes place during the flash on time;
- Hardware Trigger: the code reading is started with a trigger press (ON);
- Hardware Trigger Ready: the illuminator is switched ON when the reader sees a
 code. It functions as a pointer aiming at the code to be read. The reading phase
 starts only when the trigger is pressed. In this mode the reader is automatically
 set to trigger active level and one read per cycle parameters. (Only for Handheld operation).
- Automatic: The illuminator is switched ON when the reader sees a code. The reading phase starts automatically.

5.2.2 Hardware Trigger Mode

This mode determines how the reading phase is controlled when the hardware trigger operating mode is selected:

- trigger active level: the reader goes ON when the trigger is pressed and goes
 OFF when it is released
- trigger active pulse: the reader goes ON at the first trigger press and goes OFF only at a second press

5.2.3 Trigger-Off Timeout

When this timeout is selected, the reader turns OFF automatically after the desired period of time.

5.2.4 Reads per Cycle

In general, a **reading cycle** corresponds to the ON + OFF times of a device. The resulting effects of this parameter on code reading depend on other related configuration conditions. Here are the definitions of ON and OFF times.

- For readers using the software trigger parameter (FLASH MODE), a reading cycle corresponds to the *flash on + flash off* times. Code reading takes place during the *flash on* time.
- For readers using the *hardware trigger* parameter, a reading cycle corresponds to a trigger press (ON) + one of the following OFF events:

trigger release (for *trigger active level*) a second trigger press (for *trigger active pulse*) *trigger-off timeout* (see par. 5.2.3).

When **one read per cycle** is selected, the device decodes only one code during the ON period <u>and immediately turns the reader OFF</u>. It is only possible to read another code when the next ON time occurs.

In **multiple reads per cycle**, the ON period is extended so that the device can continue decoding codes until an OFF event occurs. For software trigger mode, the *flash on* period is immediately reset after each read and therefore extended. If another code is decoded before the reset *flash on* period expires, it is again reset and the effect is that the device remains ON, decoding codes until the *flash on* or *timeout* period expires.

The Safety Time parameter should be used in this case to avoid unwanted multiple reading of the same code, see par. 5.2.5.

5.2.5 Safety Time

Safety time prevents the device from immediately decoding the same code more than once. Same code consecutive reading can be disabled requiring the reader to be removed from the code (no decoding) for at least 400 ms, or a timeout can be set up to 9.9 seconds before the decoder will accept the same code. Reading is immediate if the code changes.

The safety time parameter is not applicable when reading stacked codes or when setting one read per cycle in hardware trigger operating mode, since these settings require voluntary action by the user.

5.3 DECODING PARAMETERS

CAUTION

These parameters are intended to enhance the decoding capability of the reader for particular applications. Used incorrectly, they can degrade the reading performance or increase the possibility of a decoding error.

5.3.1 Ink-Spread

The ink-spread parameter allows the decoding of codes which are not perfectly printed because the page texture tends to absorb the ink.

5.3.2 Overflow Control

The overflow control parameter can be disabled when decoding codes printed on small surfaces, which do not allow the use of an overflow space.

This command does not effect code families 2/5, Code 128 and Code 93.

This command is forced (enabled) when PDF417 codes are enabled.

5.3.3 Interdigit Control

The interdigit control parameter verifies the interdigit spacing for code families Code 39 and Codabar.

5.4 ADVANCED FORMATTING

5.4.1 Zebra Printer Formatting

Some Zebra Bluetooth Printers (example: Cameo 3 BT or similar type) allow format files (pre-loaded in its memory) to be selected for printing labels with different formatting. These files can be preloaded onto the Zebra printer using the Label Vista TM program.

Gryphon™ BT as Master provides the possibility to define a number of formatting parameters and their relative values (type), which can be passed to the printer format files globally, (one setting is valid for all 16 possible pre-defined printer format files). You can set between 0 and 4 parameters, which can be of two types, barcode data or code ID.

Setting 0 parameters means printing a label with no barcode or code ID information.

Setting between 1 and 4 parameters allows printing barcode labels with barcode and/or code ID information. The number of barcode/code ID values selected must match the number of printer parameters selected.

The Gryphon™ BT default setting is:

"! UF DLFMT00.FMT[CR][LF]barcoderead[CR][LF]barcoderead[CR][LF]"

where Gryphon™ BT sends two parameters (both barcode data) to file 00. The assumption is that one barcode is used to print the actual barcode and the other is used to print the human readable numbers of the barcode all on the same label.

Not all barcode symbologies read by Gryphon™ BT are managed by the printer, see your printer documentation for a list of printable barcode symbologies.

Note: "barcoderead" can also be a barcode formatted with headers and terminators.

5.4.2 Zebra Printer Format File Selection

Select the number of the Zebra printer format file which is pre-loaded in the printer memory and contains the graphic and parameter value information for printing a label. These files must be programmed correctly to accept the data passed to them from the Gryphon™ BT reader.

5.5 RADIO PARAMETERS

5.5.1 Radio Protocol Timeout

This parameter sets the valid time to wait before transmission between the Gryphon^{TM} BT reader and the remote Bluetooth^{B} device is considered failed.

This parameter should be set taking into consideration the radio traffic (number of readers in the same area). It can be set between 3 and 19 seconds.

5.5.2 Transmission Retry

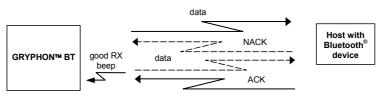
This parameter allows setting a period of time in which transmission of the previously read barcode will automatically be retried. If not disabled (00), this value must be at least equal to double the Radio Protocol Timeout value (see par. 5.5.1).

Each time transmission is retried, the reader emits a beep tone lower than the "Good Decode" beep tone.

Transmission retry is valid only if ACK/NACK Protocol is enabled (see par. 5.5.3).

5.5.3 ACK/NACK Protocol and Frame Packing

ACK/NACK Protocol


The transmission protocol takes place between the reader and the Host. The reader passes its data (code read) to the remote Bluetooth® device (Host).

In the following descriptions the completed transmission is indicated by the Beeper Control for Radio Response parameter with its default setting to "Good Decode and Good Reception" beep, see par. 5.5.6.

When ACK/NACK is disabled, there is no control from reader to Host transmission, therefore the reader responds with the good reception tone.

ACK/NACK disabled

ACK/NACK enabled

When ACK/NACK is enabled, the Host sends an ACK character (06 HEX) in the case of good reception or the NACK character (15 HEX) requesting re-transmission, in the case of bad reception. <u>Only after the ACK character is received by Gryphon™</u> BT does the reader respond with the good reception tone.

If the reader does not receive an ACK or NACK, transmission is ended after the Radio Protocol Timeout, par. 5.5.1, or retried if transmission retry is enabled, par. 5.5.2.

Frame Packing

When Frame Packing is disabled, the <u>Output Message</u> from the Gryphon[™] BT reader is sent to the Host as is, see par. 5.1.

If instead, Frame Packing is enabled, the <u>Output Message</u> is "packed" into a Frame with the following format:

STX Length Control Counter Output Message CRC-16 CR where:

STX = Frame Start character (02 Hex).

Length = 2 bytes; indicates frame length of the remaining fields (including CR).

Control = 1 byte; indicates message fragmentation. For further details see the DL Security Protocol documentation on the CD-ROM.

Counter = a loop counter for the Output Message characters (bytes) that cycles from 0 to 255 and then restarts.

Output Message = complete text message from the Gryphon™ BT reader including optional fields as shown in par. 5.1. The maximum length of this field is 304 bytes.

CRC-16) = 2 bytes; 16-bit Cyclic Redundancy Check based on the hex 1021 polynomial and performed on all bytes from Length up to the CRC itself. The MSB is sent first. For further details see the DL Security Protocol documentation on the CD-ROM.

CR = Frame Stop character (0D Hex).

To simplify the management of this frame packing, and to avoid having to develop a special proprietary software program, included on the CD-ROM are: the DL Security Protocol example program, (written in Visual Basic), the Windlbt.dll, and the source code of the example. The example program allows extraction of the data from the frame, verification of the CRC, discarding any duplicate data (with the same counter value), and automatic management of Frame Packing and ACK/NACK protocol in response to each frame.

5.5.4 Power-Off Timeout

If this command is enabled, after the desired timeout in hours, the GRYPHON™ BT batteries are disconnected and all power consumption ceases. To restore power, press the trigger once. The reader will now be ready to read codes.

Power-off does not effect configuration parameters.

5.5.5 User Friendly Name

This parameter provides a way to identify the Gryphon™ BT reader in a human readable (user-friendly), format. This name is returned with the reader configuration parameters (see par. 5.6). The name is made up of a fixed 20-character field. If you choose to use a name that is less than 20 characters, you must fill in the blanks with a valid character (i.e. space character). Valid characters are in the range 00 - 7E and must be entered in hex format.

5.5.6 Beeper Control for Radio Response

The data entry good read tone normally results in two beeps; the first indicates that the reader has decoded the code, the second indicates whether the remote Bluetooth® device has received the data.

This can be changed according to the following selections:

- Good Decode and Good Reception: both good decode and good reception are signaled (two beeps).
- Only Good Decode: only the first beep indicating a good read is signaled.
- Only Good Reception: only the second beep indicating a good reception is signaled.
- Off: Neither good read nor good reception beeps are signaled.

For all configurations, any transmission errors will always be signaled.

5.5.7 Auto-Connection (Master only)

Upon power-up, the Gryphon $^{\text{TM}}$ BT reader makes attempts to connect with the remote Bluethooth device (Slave). If the connection is not successful, the reader remains on, but not connected.

In this case reconnection can be requested by double clicking the reader trigger or by reading the "Request Radio Connection" command in par. 5.7.

5.5.8 Auto-Reconnection (Master only)

If a radio connection is interrupted, the Gryphon ™ BT reader makes attempts to reconnect with the remote Bluethooth[®] device (Slave). If the connection is not successful, the reader remains on, but not connected.

In this case reconnection can be requested by double clicking the reader trigger or by reading the "Request Radio Connection" command in par. 5.7.

5.6 CONFIGURATION EDITING COMMANDS

The following commands carry out their specific function and then exit the configuration environment.

Command	Description	
	Restore Gryphon™ BT reader default configuration (see the relative Quick Reference Manual for default settings).	
	This command does not reset: role (Master /Slave) remote Bluetooth [®] address user-friendly name	
	Transmit the Gryphon™ BT Software release via radio.	
	Transmit Gryphon™ BT reader configuration in ASCII format to Host via radio.	
	Transmit Gryphon™ BT reader configuration in ASCII format to Host via C-Gryphon cradle (Gryphon™ BT reader must be placed onto cradle).	
	Transmit Gryphon™ BT address (BT_ADDR) via C-Gryphon cradle (Gryphon™ BT reader must be placed onto cradle).	

5.7 RADIO CONTROL COMMANDS

The following commands carry out their specific function and then exit the configuration environment.

Request Radio Disconnection (Master only)

Request Radio Connection (*Master only*)

This request can also be performed by double clicking the reader trigger.

Request immediate Power-off. At power-on, Auto-connection attempted only if enabled.

5.8 C-GRYPHON CONFIGURATION

Battery selection is required only when the Gryphon™ BT reader has an Alkaline battery and you want to use C-GRYPHON either for serial configuration, software upgrades or to hold Gryphon™ BT. Since this type of battery must not be charged it is necessary to disable the C-GRYPHON charge function by following the procedure:

1. With the Gryphon™ BT read the following code:

The blue LED on the Gryphon™ BT will blink, signaling the reader has accepted the command.

Place the reader onto the charger within 10 seconds. The blue LED turns 2. off and a short beep is emitted

To enable the charge function repeat step 1 and 2 substituting the "Alkaline" code with the following one:

Attempts to charge Alkaline batteries could cause leakage of liquid, generation of heat or, in extreme cases, explosion. If using Alkaline batteries, carefully follow the procedure above to avoid damage.

6 TROUBLESHOOTING

Problem	Solution	
The beeper and LED signal radio disconnection from the remote Bluetooth® device.	The distance between the remote device and Gryphon™ BT may be too far or there may be obstacles to radio transmission between them. Reconnect.	
The requested radio	Reduce the distance between the devices.	
connection by Gryphon™ BT Master does not activate.	Check that Gryphon™ BT is powered (batteries are charged), that the radio protocol software version is compatible with Gryphon™ BT, that there is not already another BT device connected using the same SPP profile.	
	Insert the remote device address again to Gryphon™ BT.	
	Check the Gryphon™ BT configuration using the Transmit configuration command via C-Gryphon cradle.	
The remote Bluetooth [®] device recognizes Gryphon [™] BT but cannot connect to it.	Check that there are no limits set to the connection such as a password.	
carnot connect to it.	Check that the radio protocol software version is compatible with Gryphon $^{\mbox{\tiny TM}}$ BT.	
The radio range seems reduced.	Check that there are no obstacles to radio transmission between the devices.	
An un-connected Gryphon™ BT Master accepts a radio connection from another Bluetooth [®] Master device.	In this case the Gryphon™ BT automatically forces a disconnection and restarts.	
A Gryphon™ BT Master fails to make an automatic connection.	Double-click the trigger to force an immediate retry of the radio connection or read the "Request Radio Connection" code in par. 5.7.	
A Gryphon™ BT Master remains connected to a Slave device.	Read the "Request Radio Disconnection" code in par. 5.7 or power off the Bluetooth [®] Slave device.	

7 TECHNICAL FEATURES

7.1 GRYPHON™ BT

Electrical Features			
Battery Type	2 AA NiMh* batteries		
	1.2 V – 1850 mAh or 2100 mAh		
Time of recharge NiMh	4 - 5 hours		
Operating autonomy	24.000 reads - NiMh		
(typ. continuous reading)	24.000 (Caus - Milvii)		
Max scan rate	270 scans/sec		
Indicators	LED, Good Read Spot, Beeper		
Optical Features			
Sensor	CCD solid state (3648 pixels)		
Illuminator	LED array		
Wavelength	630 ~ 670 nm		
Max. LED Output Power	0.33 mW		
LED Safety Class	Class 1 EN 60825-1		
Reading field	see reading diagram (p. 47)		
Max. resolution	0.076 mm, 3 mils		
PCS minimum	15% (Datalogic Test Chart)		
Radio Features			
Bluetooth® version	Bluetooth [®] 1.1		
Profiles supported	Serial Port Profile		
Working frequency	2.4000 to 2.4835 GHz		
Maximum output power	2.5 mW (class 2)		
Range (in open air)	10 m.		
Environmental Features			
Working Temperature	0°to + 40 °C / 32° to 104 °F		
Storage Temperature	-20°to + 70 °C / - 4° to 158 °F		
(without battery)			
Humidity	90% non condensing		
Drop resistance	1.8 m		
Protection class	IP30		
Mechanical Features			
Weight (with batteries)	about 280 g. / 9.87 oz		
Dimensions	179 x 81 x 98 mm / 7.04 x 3.18 x 3.85 in		
Material	ABS and Polycarbonate molded with rubber		

^{*} It is possible to employ also NiCd or non-chargeable Alkaline AA batteries.

7.2 C-GRYPHON

C-GRYPHON			
Electrical Features			
Supply voltage	928 Vdc		
Power consumption	max. 8 W (charging) *		
Battery charging (red) Indicators Charge completed (green) Power (yellow)			
Time of recharge	NiMh / NiCd batteries: 4 - 5 hours		
Environmental Features			
Working temperature	0° to +40 °C / 32° to 104 °F		
Storage temperature	-20° to +70 °C / - 4° to 158 °F		
Humidity	90 % non condensing		
Protection class	IP30		
Communications			
Interface	RS232		
Baud Rate	9600		
Data Bits	8		
Stop Bit	1		
Parity None			
Mechanical Features			
Weight	about 250 g. / 8.81 oz		
Dimensions	208 x 107 x 55.5 mm / 8.1 x 4.2 x 2.18 in		
Material	ABS		

^{*} Having a switching regulator inside, the C-GRYPHON draws the same power, regardless of the supply voltage, i.e. as the input voltage increases the current drawn decreases.

7.3 STATUS INDICATORS

The reader has three indicators, LED, Beeper and Good Read Spot. The C-Gryphon cradle has three LEDs. They signal several operating conditions which are described in the tables below.

H = high tone M = medium tone L = low tone

GRYPHON™ BT READER START-UP

Beeper ¹	Meaning
LLLL H	Parameters loaded correctly, radio OK
LLLL HLHL	Parameters loaded correctly, no answer from radio
H H H H long tones	Parameter loading error, reading or writing error in the non volatile memory
HLHL	Hardware error in EEPROM

GRYPHON™ BT READER CONFIGURATION

Beeper ¹	Meaning
нннн	Correct entry or exit from Configuration mode
L	Good read of a command
LLL	Command read error

GRYPHON™ BT POWER

Beeper	LED	Meaning
10 short H	10 short blinks	Low Battery

¹ Only the Beeper Intensity command can modify these signals.

GRYPHON™ BT READER DATA ENTRY

Beeper ¹	LED	Good Read Spot	Meaning
one beep²	ON	ON	Correct read of a code in normal mode
H L long		TX error between Gryphon™ BT and remote Bluetooth [®] device	
H long	ON	ON	Successful advanced format concatenation
ннн		Timeout expired – operation not completed	
H H long		Error in advanced data formatting	
	OFF	OFF	Ready to read a code

GRYPHON™ BT READER STATUS

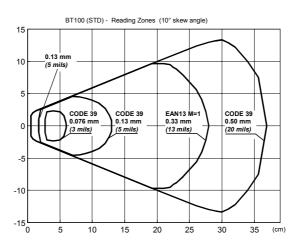
Beeper ¹	LED	Meaning	
LMMH	Radio connection		
HMML		Radio disconnection	
	1 blink / 2 sec.	Radio connected	
	2 blinks / 2 sec.	Radio not connected	
	1 blink / 4 sec.	Sleep state and radio connected	
	2 blinks / 4 sec.	Sleep state and radio not connected	
ticks	Short blinks (Master only)	Connection / re-connection attempts	

¹ Only the Beeper Intensity command can modify these signals.

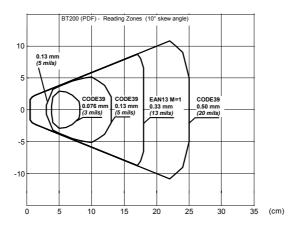
Normally this results in two beeps; the first indicates that the reader has decoded the code, the second indicates whether the remote Bluetooth $^{\tiny{\textcircled{\$}}}$ device has received the data. See also par. 5.5.6.

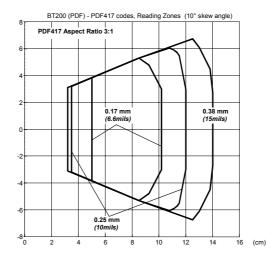
² The data entry good read tone is user-configurable with <u>all</u> the Beeper commands in the Reading Parameters section.

C-GRYPHON CHARGE STATUS


Red LED	Green LED	Meaning
ON	ON	Charging
OFF	ON	End of charge
Flashing	OFF	Reconditioning
OFF	OFF	No battery inserted
Flashing	OFF	Discharging (see par. 2.3)
Flashing	Flashing	Reader not correctly placed onto the charger; shorted or open battery

C-GRYPHON POWER/COMMUNICATION

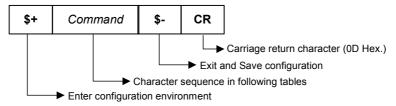

Yellow LED	Meaning
ON	Power applied
OFF	Error in reading EEPROM parameters
Blinking	Transmission over the Host port


7.4 READING DIAGRAMS

GRYPHON™ BT100

GRYPHON™ BT200

A HOST CONFIGURATION STRINGS


In this section we provide a description of how to send serial strings from the Host to the reader using the C-GRYPHON.

This method requires C-GRYPHON to be connected to the Host via RS232 interface.

Use this method either to modify the device configuration, or to upgrade the reader application software.


To proceed with these operations, connect an RS232 cable between C-GRYPHON and the PC. Connect the power supply to C-GRYPHON. Place the Gryphon $^{\text{TM}}$ BT reader onto the charger.

When this method is used, the programming sequence format is the following:

Example:

Multiple command programming sequence:

Each configuration parameter setting removes the condition previously active for that parameter.

NOTE

The device buffer can contain about 400 characters. If your programming string goes over this value, you must split it into separate groups and send each group after a delay of at least 3 seconds to give the reader time to empty the buffer and interpret the commands.

SERIAL CONFIGURATION STRINGS

ENTER/EXIT CONFIGURATION COMMANDS		
DESCRIPTION	STRING	
Enter Configuration	\$+	
Exit and Save Configuration	\$-	
Restore Default ¹	\$*	
Transmit Software Release ¹	\$!	
Transmit Device Configuration in ASCII ¹ ²	\$&	

¹ These commands do not require \$-.

² For Gryphon™ BT200, this command transmits only the Bluetooth[®] radio configuration.

DATA FORMAT			
DESCRIPTION	STRING		
Code Identifier	disable	EB0	
	Datalogic standard	EB1	
	AIM standard	EB2	
	Custom	EB3	
Custom Code Identifie	r	EHabc	
Headers	no header	EA00	
	one character	EA01x	
	two characters	EA02xx	
	three characters	EA03xxx	
	four characters	EA04xxxx	
	five characters	EA05xxxxx	
	six characters	EA06xxxxxx	
	seven characters	EA07xxxxxxx	
	eight characters	EA08xxxxxxxx	
Terminators	No terminator	EA10	
	one character	EA11x	
	two characters	EA12xx	
	three characters	EA13xxx	
	four characters	EA14xxxx	
	five characters	EA15xxxxx	
	six characters	EA16xxxxxx	
	seven characters	EA17xxxxxxx	
	eight characters	EA18xxxxxxxx	

- a = ASCII character.
- b, c, x = HEX values representing an ASCII character.
- a = ASCII character of the DATALOGIC STANDARD Code Identifier from the table on p. 121.
- b = Hex value of the first Custom Code Identifier character from 00 to FD;
 FF = disable Code Identifier
- c = Hex value of the second Custom Code Identifier character from 00 to FD;
 FF = disable second character of Custom Code Identifier
- x = Hex value from 00 to FE

DATA FORMAT (continued)			
DESCRIPTION		STRING	
Code Length Tx	not transmitted	EE0	
	transmitted in variable-digit format	EE1	
	transmitted in fixed 4-digit format	EE2	
Field Adjustment	disable	EF0	
	right addition	EFa0d	
	left addition	EFa1d	
	right deletion	EFa2d	
	left deletion	EFa3d	
Field Adjustment Character		EGe	
Character Replacement	disable character replacement	EO0	
	first character replacement	EO1afg	
	second character replacement	EO2afg	
	third character replacement	EO3afg	
Address Stamping	disable reader address stamping	QU0	
	enable reader address stamping	QU1	
Address Delimiter	disable reader address delimiter	QV0	
	enable reader address delimiter and select character	QV1 <i>h</i>	
Gryphon™ BT address	disable	QX0	
	enable	QX1	

a = ASCII character.

d = a number from the Hex/Numeric Table

e, f, g, h = HEX values representing an ASCII character

a = ASCII character of the DATALOGIC STANDARD Code Identifier from the table on p. 121.

d = a number in the range **01-32** from the Hex/Numeric Table

e = Hex value from 00 to FE

f = Hex value of the character to be replaced from 00 to FE

g = Hex value of the new character to insert from 00 to FE FF = replace with no new character (remove character)

h = a HEX value in the range from **00 - FE** representing the ASCII character.

POWER SAVE			
DESCRIPTION		STRING	
Scan Rate	67 scans per sec.	BT0	
	135 scans per sec.	BT1	
	270 scans per sec.	BT2	

READING PARAMETERS			
DESCRIPTION		STRING	
Operating Mode	hand-held operation	BP0	
	stand operation	BP1	
	automatic	BP2	
Hand-Held Operation	software trigger	BK0	
·	hardware trigger	BK1	
	automatic	BK2	
	hardware trigger ready	BK4	
Stand Operation	software trigger	BU1	
	hardware trigger	BU3	
	automatic	BU0	
Hardware Trigger Mode	trigger active level	BA0	
	trigger active pulse	BA1	
Trigger-off Timeout (s)	·	BD00 - BD99	
FLASH ON (100 ms)		BB001 - BB099	
FLASH OFF (100 ms)		BB101 - BB199	
Reads per Cycle	one read	BC0	
	multiple reads	BC1	
Safety Time (100 ms)	•	BE00 - BE99	
Beeper Intensity	very low intensity	BG0	
	low intensity	BG1	
	medium intensity	BG2	
	high intensity	BG3	
Beeper Tone	tone 1	BH0	
	tone 2	BH1	
	tone 3	BH2	
	tone 4	BH3	
Beeper Type	monotone	BJ0	
	bitonal	BJ1	
Beeper Length	long	BI0	
	short	BI1	
PDF Decoding Recognition Intensity	low	BW0	
	high	BW1	
Good Read Spot - Duration	disabled	BV0	
	short	BV1	
	medium	BV2	
	long	BV3	

	DECODING PARAMETERS		
DESCRIPTION		STRING	
Ink-spread	disable	AX0	
	enable	AX1	
Overflow control	disable	AW1	
	enable	AW0	
Interdigit control	disable	AV0	
	enable	AV1	
Puzzle Solver ^{IM}	disable	AU0	
	enable	AU1	
Decoding Safety	one read	ED0	
	two reads	ED1	
	three reads	ED2	
	four reads	ED3	

	CODE SELECTION			
DESCRIPTION			STRING	
DISABLE AL	L FAMILY CODES		AZ0	
EAN/UPC	disable EAN/UPC family		AA0	
	EAN 8/EAN 13/UPC A/UPC E	without ADD ON	AA1	
		with ADD ON	AA5	
		with and without ADD ON	AA8	
	EAN 8/EAN 13	without ADD ON	AA3	
		with ADD ON 2 ONLY	AAK	
		with ADD ON 5 ONLY	AAL	
		with ADD ON 2 AND 5	AA6	
	UPC A/UPC E	without ADD ON	AA4	
		with ADD ON 2 ONLY	AAM	
		with ADD ON 5 ONLY	AAN	
		with ADD ON 2 AND 5	AA7	
	EAN 8 check digit transmission	disable	AAG0	
		enable	AAG1	
	EAN 13 check digit transmission	disable	AAH0	
		enable	AAH1	
	UPC A check digit transmission	disable	AAI0	
		enable	AAI1	
	UPC E check digit transmission	disable	AAJ0	
		enable	AAJ1	
	conversions	UPC E to UPC A	AAA	
		UPC E to EAN 13	AAB	
		UPC A to EAN 13	AAC	
		EAN 8 to EAN 13	AAD	

	CODE	E SELECTION (continued)	
DESCRIPT	STRING		
	ISBN Conversion cod	des enable ISBN	AP1
		enable ISSN	AP2
		enable ISBN and ISSN	AP3
		disable ISBN and ISSN	AP0
Code 39	disable Code 39 fam	ily	AB0
	Standard	no check digit control	AB11
		check digit control and transmission	AB12
		check digit control without transmission	AB13
	Full ASCII	no check digit control	AB21
		check digit control and transmission	AB22
		check digit control without transmission	AB23
	CIP 39		AB3
	Code 32		AB4
	code length		AB*xxxx
2/5	disable Code 2/5 fam	nily	AC0
	Interleaved 2/5	no check digit control	AC11xxxx
		check digit control and transmission	AC12xxxx
		check digit control without transmission	AC13xxxx
	Normal 2/5 5 bars	no check digit control	AC21xxxx
		check digit control and transmission	AC22xxxx
		check digit control without transmission	AC23xxxx
	Industrial 2/5 (IATA)	no check digit control	AC31xxxx
		check digit control and transmission	AC32xxxx
		check digit control without transmission	AC33xxxx
	Matrix 2/5 3 bars	no check digit control	AC41xxxx
		check digit control and transmission	AC42xxxx
		check digit control without transmission	AC43xxxx
	CIP/HR		AC5

xxxx = ASCII numbers that define the code length where:

- First 2 digits = minimum acceptable code length.
- Second 2 digits = maximum acceptable code length.

The minimum code length must always be less than or equal to the maximum.

The maximum code length for all codes is 99 characters:

Examples:

0132 = variable length from 1 to 32 digits in the code.

1010 = 10 digit code length only.

		CODE	SELECTION (conf	tinued)	
DESCRIPTION	ON		,	,	STRING
Codabar	disable (Codabar family			AD0
	Standard	ı	no start/stop character equality control nor transmission		AD111
			no start/stop cha but transmission	racter equality control	AD112
			start/stop characterists	eter equality control sion	AD121
			start/stop characteristics and transmission	cter equality control	AD122
	ABC Co		but transmission	racter equality control	AD212
	Codabar	ABC forced co	ncatenation		AD232
	code len	length		AD*xxxx	
	start/sto	/stop character case in transmission lower case		ADA0	
				upper case	ADA1
Code 128	disable (disable Code 128 family			AI0
	enable C	enable Code 128 - control without transmission of check digit			Al11
	enable E	enable EAN 128 - control without transmission of check digit			Al21
	add GS I	pefore Code	disable		EQ0
			enable		EQ1
	ISBT 128	3	enable ISBT 128	3	Al31
	code len	code length			
Code 93	disable (Code 93 family			AK0
	enable Code 93 - control without transmission of check digit			AK1	
Codablock-A disable		AO0			
enable			AO1		
Codablock-F	d	isable the famil	у		AN0
		enable Standard		AN1	
	е	nable EAN			AN2

xxxx = ASCII numbers that define the code length where:

- First 2 digits = minimum acceptable code length.
- Second 2 digits = maximum acceptable code length.

The minimum code length must always be less than or equal to the maximum.

The maximum code length for all codes is 99 characters:

EXAMPLES:

0132 = variable length from 1 to 32 digits in the code.

1010 = 10 digit code length only.

CODE SELECTION (continued)			
DESCRIPTION		STRING	
MSI	disable the family	AE0	
	no check	AE1	
	MOD10 no tx	AE2	
	MOD10 with tx	AE3	
	MOD11-MOD10 no tx	AE4	
	MOD11-MOD10 with tx	AE5	
	MOD10-MOD10 no tx	AE6	
	MOD10-MOD10 with tx	AE7	
Plessey	disable the family	AF0	
	Standard no check	AF11	
	Standard check - with tx	AF12	
	Standard check - no tx	AF13	
	Anker no check	AF21	
	Anker check - with tx	AF22	
	Anker check - no tx	AF23	
Telepen	disable the family	AL0	
	Numeric no check	AL11	
	Numeric check - with tx	AL12	
	Numeric check - no tx	AL13	
	Alpha no check	AL21	
	Alpha check - with tx	AL22	
	Alpha check - no tx	AL23	
Delta IBM	disable the family	AH0	
	no check	AH1	
	Type 1 check	AH2	
	Type 2 check	AH3	
Code 11	disable the family	AG0	
	no check	AG1	
	Type C with tx	AG21	
	Type C no tx	AG22	
	Type K with tx	AG31	
	Type K no tx	AG32	
	Type C and K with tx	AG41	
	Type C and K no tx	AG42	
Code 16K	disable	AJ0	
	enable	AJ1	
Code 49	disable	AM0	
	enable	AM1	

CODE SELECTION (continued)			
DESCRIPTION		STRING	
RSS	disable the family	AQ0	
	disable RSS Expanded Linear and Stacked	AQ10	
	enable RSS Expanded Linear and Stacked	AQ11	
	disable RSS Limited	AQ20	
	enable RSS Limited	AQ21	
	disable RSS 14 Linear and Stacked	AQ30	
	enable RSS 14 Linear and Stacked	AQ31	
PDF417	disable	AR0	
	enable	AR1	

RADIO PARAMETERS				
DESCRIPTION	DESCRIPTION			
Radio Protocol Timeout	enable (seconds)	RH03-RH19		
Power-Off Timeout		RP00-RP99		
Beeper Control For Radio Response	normal	BF0		
	only good decode	BF1		
	only good reception	BF2		
	off	BF3		
Transmission Retry (s)		QO00 - QO60		
ACK/NACK Protocol and	No ACK/NACK nor Frame Packing	QL0		
Frame Packing ACK/NACK only		QL1		
	Frame Packing only	QL2		
	ACK/NACK and Frame Packing	QL3		
Auto-Connection (Master only)	disable	QA0		
	enable	QA1		
Auto-Reconnection (Master only)	disable	QM0		
	enable	QM1		

B CODE IDENTIFIER TABLE

2/5 normal 5 bars

EAN 8

UPC A

EAN 8 with 2 ADD ON

EAN 13 with 2 ADD ON

UPC A with 2 ADD ON

2/5 Industrial

2/5 matrix 3 bars

EAN 13

UPC E

EAN 8 with 5 ADD ON

EAN 13 with 5 ADD ON

UPC A with 5 ADD ON

UPC E with 5 ADD ON

Code 39 Full ASCII

ABC CODABAR

EAN 128

CIP/39

Code 32

UPC E with 2 ADD ON

Code 39

CODABAR

Code 128

Code 93

CIP/HR

ISBT 128

CODABLOCK-A

CODABLOCK-F Standard

CODABLOCK-F EAN

MSI

Plessey Anker

Plessey Standard

Delta IBM

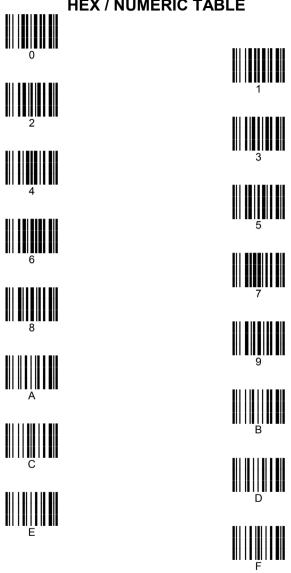
Telepen

Code 16K

Code 11

PDF417

Code 49


C HEX AND NUMERIC TABLE

OPEN THIS PAGE TO READ THE DESIRED HEX AND NUMERIC SELECTIONS

	CHARACTER TO HEX CONVERSION TABLE				
char	hex	char	hex	char	hex
NUL	00	*	2A	U	55
SOH	01	+	2B	V	56
STX	02	,	2C	W	57
ETX	03	-	2D	X	58
EOT	04	•	2E	Υ	59
ENQ	05	/	2F	Z	5A
ACK	06	0	30	[5B
BEL	07	1	31	\	5C
BS	08	2	32]	5D
HT	09	3	33	^	5E
LF VT	0A	4	34	-	5F
VT	0B	5	35		60
FF	0C	6	36	а	61
CR	0D	7 8	37	b	62
SO SI	0E	9	38	C	63
DLE	0F	9	39	d	64 65
DC1	10 11		3A 3B	e f	65 66
DC1 DC2	12	, <	3D 3C		67
DC3	13	=	3D	g h	68
DC4	14	>	3E	I "	69
NAK	15	?	3F	j	6A
SYN	16	: @	40	k	6B
ETB	17	Ä	41	l ï	6C
CAN	18	В	42	m	6D
EM	19	Č	43	n	6E
SUB	1A	D	44	0	6F
ESC	1B	Ē	45	p	70
FS	1C	F	46	q	71
GS	1D	G	47	r	72
RS	1E	Н	48	s	73
US	1F	1	49	t	74
SPACE	20	J	4A	u	75
!	21	K	4B	V	76
"	22	L	4C	W	77
#	23	M	4D	x	78
\$	24	N	4E	у	79
%	25	0	4F	Z	7 A
&	26	Р	50	{	7B
· '	27	Q	51		7C
(28	R	52	}	7D
)	29	S	53	~	7E
		Т	54	DEL	7F

HEX / NUMERIC TABLE

Cancels an incomplete configuration sequence